
Monads and all that…
II. Monad Transformers

John Hughes

Chalmers University/Quviq AB

Monads from last time…

• State s, for state transformers

• Maybe, for computations that may fail

• Lists (in the exercises), for multiple values

• Note the strong similarity Maybe <-> lists!

• Lists ~ Maybe + backtracking

newtype State s a = State (s -> (a,s))

data Maybe a = Nothing | Just a

data [] a = [] | (:) a ([] a)

Maybe ~ Lists

• Both provide a way to fail

• Both offer a way to combine alternatives

– (i.e. to handle failures)

• It makes sense to define a common interface

MonadPlus

class Monad m => MonadPlus m where

 mzero :: m a

 mplus :: m a -> m a -> ma

instance MonadPlus Maybe

where

 mzero = Nothing

 Nothing `mplus` m =

 m

 Just a `mplus` _ =

 Just a

instance MonadPlus []

where

 mzero = []

 [] `mplus` m =

 m

 (a:as) `mplus` bs =

 a : (as `mplus` bs)

queens 0 = return []

queens n =

 do qs <- queens (n-1)

 q <- foldr1 mplus (map return [1..8])

 if safe q qs then return (q:qs)

 else mzero

N-Queens in the list monad

queens 0 = return []

queens n =

 do qs <- queens (n-1)

 q <- foldr1 mplus (map return [1..8])

 guard (safe q qs)

 return (q:qs)

*Queens> queens 8 :: [[Integer]]

[[4,2,7,3,6,8,5,1],[5,2,4,7,3,8,6,1],…

*Queens> queens 8 :: Maybe [Integer]

Nothing

return 1 `mplus` return 2

`mplus` return 3…

Let’s write a backtracking parser…

• Parsers need to backtrack

– use list 

• Parsers need to consume input

– use State String 

• But we need both at once…

– hmm…

Putting State and list together

• State String [a]

• [State String a]

• s -> [(a,s)]

s -> ([a],s)

[s -> (a,s)]

Not a combination of State
and something else!

Monads do not compose!

• Given monads m1 and m2,

 is not a monad!

• Try defining (>>=)—you’ll fail.

newtype Compose m1 m2 a = Comp (m1 (m2 a))

What can we do instead?

• We know what we want:
– s -> [(a,s)]

• This does use the list monad

• Let’s parameterize the State monad on an
”underlying effect”

newtype StateT s m a =

 StateT {runStateT :: s -> m (a,s)}

Is this really a monad?

• StateT s is a monad transformer

newtype StateT s m a =

 StateT {runStateT :: s -> m (a,s)}

instance Monad m => Monad (StateT s m)

where

 return a = StateT (\s -> return (a,s))

 m >>= f = StateT (\s -> do

 (a,s') <- runStateT m s

 runStateT (f a) s')

”Monad Transformer” sounds
harder than ”Monad”

BUT IT’S NOT!

• It’s just an easy way to build the monad you
want

Monad Transformers

• A monad parameterized on an underlying
monad…

• …such that underlying computations can be
”lifted” into the new monad

instance MonadTrans t where

 lift :: Monad m => m a -> t m a

instance MonadTrans (StateT s) where

 lift m = StateT (\s -> do

 a <- m

 return (a,s))

Can we backtrack and fail?

• i.e. can we define a MonadPlus instance, if
the underlying monad has one?

instance MonadPlus m =>

 MonadPlus (StateT s m) where

 mzero = lift mzero

 m `mplus` m' =

 StateT (\s ->

 runStateT m s `mplus` runStateT m' s)

class Monad m => MonadState s m

where

 get :: m s

 put :: s -> m ()

Get and Put

• get and put are easy to implement:

• But now we need put & get for State s,
and for StateT s m

• Define a class of monads with state:

get = StateT (\s -> return (s,s))

put s = StateT (\s' -> return ((),s))

class Monad m => MonadState s m | m -> s

where

 get :: m s

 put :: s -> m ()

So what have we got?

• A class defining a set of features we want
– MonadState

• A monad transformer that adds those features
to any monad
– StateT s

• Instances of other classes, promoting other
features from underlying to transformed
monad
– MonadPlus

Can we do this for other monads?

• Class: MonadPlus

• Monad transformer: MaybeT, adding this

newtype MaybeT m a =

 MaybeT {runMaybeT :: m (Maybe a)}

instance MonadTrans MaybeT where

 lift m = MaybeT (liftM Just m)

instance Monad m => Monad (MaybeT m) where

 return x = MaybeT (return (Just x))

 m >>= f = MaybeT (do ma <- runMaybeT m

 case ma of

 Nothing -> Nothing

 Just a -> runMaybeT (f a))

Are we adding MonadPlus?

instance Monad m => MonadPlus (MaybeT m) where

 mzero = MaybeT (return Nothing)

 m `mplus` m' = MaybeT (do

 ma <- runMaybeT m

 case ma of Nothing -> runMaybeT m'

 Just a -> return (Just a))

…plus instances to lift other features

• Here’s the instance to lift State operations
to MaybeT:

• A library of n monad transformers needs n2
instance declarations—OK if n is not too large

instance MonadState s m => MonadState s (MaybeT m)

where

 get = lift get

 put s = lift (put s)

Noncommutativity

• Returns 1 in StateT Maybe

• Returns 2 in MaybeT State

do put 1

 ((do put 2

 mzero)

 `mplus`

 get)

Monad Transformers Compose!

• If m is a monad, so are

– StateT s (MaybeT m) a

– MaybeT (StateT s m) a

– StateT s1 (StateT s2 m) a

– …

• Given the identity monad Identity,

– MaybeT Identity a ~ Maybe a

– StateT s Identity a ~ State s a

– …

The Identity Monad

• The monad with no features!

newtype Identity a =

 Identity {runIdentity :: a}

instance Monad Identity where

 return = Identity

 m >>= f = f (runIdentity m)

A Parsing Library

• We want to add a state (the input) to the list
monad…

• We also need a function to run parsers

newtype Parser t a = Parser (StateT [t] [] a) newtype Parser t a = Parser (StateT [t] [] a)

 deriving (Monad, MonadState [t], MonadPlus)

runParser (Parser m) ts = runStateT m ts

Using all this to parse a token

• We can freely combine state & failure ops

• Accepting a token satisfying a predicate

token :: Parser tok tok

token = do toks <- get

 case toks of

 [] -> mzero

 (t:toks') -> do put toks'

 return t

satisfy p = do t <- token

 guard (p t)

 return t

Repetition

• Operations to repeat a parse 0+ or 1+ times

• Using them to parse (positive) integers

many p = some p `mplus` return []

some p = liftM2 (:) p (many p)

number :: Parser Char Integer

number = do ds <- some (satisfy isDigit)

 return (read ds)

Converts a string to the
value it denotes

Lazy evaluation is
critical!

An Arithmetic Expression Parser

expr = do a <- term

 exactly '+'

 b <- term

 return (a+b)

 `mplus`

 term

term = do a <- factor

 exactly '*'

 b <- factor

 return (a*b)

 `mplus`

 factor

factor = number

 `mplus`

 do exactly '('

 a <- expr

 exactly ')‘

 return a

exactly t =

 satisfy (==t)

Testing the Parser

• Parse the string ”1+2*3”:

• Note there are multiple results!

• If we just change [] to Maybe in defn of
Parser…

*Parser> runParser expr "1+2*3"

[(7,""),(3,"*3"),(1,"+2*3")]

*Parser> runParser expr "1+2*3"

Just (7,"")

Big Picture

• We have defined a very nice domain specific
language for backtracking parsers

– alternation (mplus), repetition (many, some),
actions (do and return)

• Most of the work was done by the monad
transformer library

– the code specific to parsing is very short

Hmm…

• list is a backtracking monad

• We added state to list

• Can we add backtracking to an arbitrary
monad?

newtype BackT m a =

 BackT {unBackT :: m (Maybe (a, BackT m a))}

A Backtracking Monad Transformer?

• MaybeT almost does it…

• How about

newtype MaybeT m a =

 MaybeT {runMaybeT :: m (Maybe a)}

Can fail, by producing
Nothing, but on success
we have no more than

one value

newtype BackT m a =

 BackT {unBackT :: MaybeT m (a, BackT m a)}

Like a list in which we m-compute each element

Is it a Monad Transformer?

• Lifted operations don’t backtrack:

• (>>=) can backtrack into first argument:

instance MonadTrans BackT where

 lift m = BackT (do a <- lift m

 return (a,mzero))

instance Monad m => Monad (BackT m) where

 return a = lift (return a)

 x >>= f = BackT (do

 (a,back) <- unBackT x

 unBackT (f a `mplus` (back >>= f)))

Is it a MonadPlus?

• `mplus` is just like list append, (a,back)
is like a:back

instance Monad m => MonadPlus (BackT m)

where

 mzero = BackT mzero

 x `mplus` y =

 BackT (do (a,back) <- unBackT x

 return (a,back `mplus` y)

 `mplus`

 unBackT y)

Example

*BackT> runBackT (return 1 `mplus` return 2)

[1,2]

Computes a list of all results in the
underlying monad, in this case IO

Now we have a backtracking monad
transformer, what shall we do with it?

Let’s implement Prolog!

• Sample Prolog definition:

• Prolog defines predicates

– append(Xs,Ys,Zs) is true  Xs++Ys == Zs

• Prolog execution solves for unknowns

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) :-

 append(Xs,Ys,Zs).

Example

• Prolog finds multiple solutions by
backtracking—multiple clauses may match

• Reverse execution!

?- append([1,2],[3,4],Zs).

Zs = [1,2,3,4]

?- append(Xs,Ys,[1,2,3]).

Xs = [], Ys = [1,2,3];

Xs = [1], Ys = [2,3];

Xs = [1,2], Ys = [3];

Xs = [1,2,3], Ys = []

What is a Prolog variable?

• A placeholder for a value

– Single-valued within one solution

– Can take different values in different solutions

• In the implementation, a cell:

X

Initially empty

3

Can be filled by a
value

…or a reference to
another variable

Y
3

Now both X and Y
represent 3

Representing Prolog Values

• What’s IORef? Haskell’s updateable references

data Logical a = Value a | Var (LogicVar a)

type LogicVar a = IORef (Maybe (Logical a))

newIORef :: a -> IO (IORef a)

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

Lifting IO operations

• We need IO in many situations

• And of course, we can lift it through BackT
(or any other monad transformer)

class Monad m => MonadIO m where

 liftIO :: IO a -> m a

instance MonadIO m => MonadIO (BackT m)

where

 liftIO io = lift (liftIO io)

Our Prolog Monad

• We have sequencing, IO, and backtracking…
just like that!

• We have to add operations on logical variables

newtype Logic a = Logic (BackT IO a)

 deriving (Monad, MonadIO, MonadPlus)

Creating a Logical Variable

• Variables are created with no contents

variable :: Logic (Logical a)

variable = liftM Var (liftIO (newIORef Nothing))

data Logical a = Value a | Var (LogicVar a)

type LogicVar a = IORef (Maybe (Logical a))

Following variable chains

• A variable is always equivalent to the end of
the chain

data Logical a = Value a | Var (LogicVar a)

type LogicVar a = IORef (Maybe (Logical a))

3
X

Y

follow :: Logical a -> Logic (Logical a)

follow (Value a) = return (Value a)

follow (Var r) = do

 v <- liftIO (readIORef r)

 case v of

 Nothing -> return (Var r)

 Just val -> follow val

Unification

• Variables are assigned values by unification

– e.g. unifying [1,2,3] with [X|Xs] assigns
X=1, Xs=[2,3]

– Like pattern-matching, except variables may occur
on both sides

– Unifying X and Y, both unbound, results in

3

Y X

A Unifiable Class

• We’ll want to unify all kinds of data…

• Unification makes its arguments equal by
instantiating logical variables—or fails

class Unifiable a where

 unify :: a -> a -> Logic ()

instance Unifiable Integer where

 unify a b = guard (a==b)

Unifying variables

 instance Unifiable a => Unifiable (Logical a) where

 unify a b = do

 a' <- follow a

 b' <- follow b

 case (a',b') of

 (Var ra,Var rb) | ra==rb -> return ()

 (Var ra,_) -> instantiate ra b'

 (_,Var rb) -> instantiate rb a'

 (Value av,Value bv) -> unify av bv

X ra

b’

Instantiating a variable

• We just write to it

• But what happens if we backtrack?

• We clear variables on backtracking—usually
implemented via the ”trail”

instantiate r v =

 liftIO (writeIORef r (Just v))

 `mplus`

 do liftIO (writeIORef r Nothing)

 mzero

Prolog Lists

• Prolog data structures may contain variables
at each component

• And they must be unifiable

data List a = Nil | Cons a (Logical (List a))

instance Unifiable a => Unifiable (List a) where

 unify Nil Nil = return ()

 unify (Cons x xs) (Cons y ys) = do

 unify x y

 unify xs ys

 unify _ _ = mzero

Let’s write Prolog in Haskell!

• Prolog:

• Haskell:

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) :-

 append(Xs,Ys,Zs).

appendL xs ys zs =

 do unify xs (Value Nil)

 unify ys zs

 `mplus`

 do x <- variable

 xs' <- variable

 zs' <- variable

 unify xs (Value (Cons x xs'))

 unify zs (Value (Cons x zs'))

 appendL xs' ys zs'

Wrapping a test

• Finally:

test :: [Integer] -> Logic ([Integer],[Integer])

test zs = do

 xs <- variable

 ys <- variable

 appendL xs ys (toLogical zs)

 liftM2 (,) (fromLogical xs) (fromLogical ys)

*BackT> runLogic (test [1,2,3])

[([],[1,2,3]),([1],[2,3]),([1,2],[3]),([1,2,3],[])]

Conclusion

• Monad transformers make it easy to construct
a wide variety of monads

• We can build DSLs with many kinds of effects

• The monad transformer library does a large
share of the work

